CORAL REEFS

0

Coral reefs are the most diverse of all marine ecosystems. They teem with life, with perhaps one-quarter of all ocean species depending on reefs for food and shelter.

This is a remarkable statistic when you consider that reefs cover just a tiny fraction (less than one percent) of the earth’s surface and less than two percent of the ocean bottom. Because they are so diverse, coral reefs are often called the rainforests of the sea.

Coral reefs are also very important to people. The value of coral reefs has been estimated at 30 billion U.S. dollars and perhaps as much as 172 billion U.S. dollars each year, providing food, protection of shorelines, jobs based on tourism, and even medicines.

Unfortunately, people also pose the greatest threat to coral reefs. Overfishing and destructive fishing, pollution, warming, changing ocean chemistry, and invasive species are all taking a huge toll. In some places, reefs have been entirely destroyed, and in many places reefs today are a pale shadow of what they once were.

WHAT IS CORAL

Coral polyps are tiny, soft-bodied organisms related to sea anemones and jellyfish. At their base is a hard, protective limestone skeleton called a calicle, which forms the structure of coral reefs. Reefs begin when a polyp attaches itself to a rock on the sea floor, then divides, or buds, into thousands of clones. The polyp calicles connect to one another, creating a colony that acts as a single organism.

The polyp is like a tin can open at just one end: the open end has a mouth surrounded by a ring of tentacles. The tentacles have stinging cells, called nematocysts, that allow the coral polyp to capture small organisms that swim too close. Inside the body of the polyp are digestive and reproductive tissues. Corals differ from sea anemones in their production of a mineral skeleton.

Shallow water corals that live in warm water often have another source of food, the zooxanthellae (pronounced zo-o-zan-THELL-ee). These single-celled algae photosynthesize and pass some of the food they make from the sun’s energy to their hosts, and in exchange the coral animal gives nutrients to the algae. It is this relationship that allows shallow water corals to grow fast enough to build the enormous structures we call reefs. The zooxanthellae also provide much of the green, brown, and reddish colors that corals have. The less common purple, blue, mauve colors found in some corals the coral makes itself

WHAT ARE CORAL REEFS

Coral reefs are large underwater structures composed of the skeletons of colonial marine invertebrates called coral. The coral species that build reefs are known as hermatypic, or “hard,” corals because they extract calcium carbonate from seawater to create a hard, durable exoskeleton that protects their soft, sac-like bodies. Other species of corals that are not involved in reef building are known as “soft” corals. These types of corals are flexible organisms often resembling plants and trees and include species such as sea fans and sea whips, according to the Coral Reef Alliance (CORAL), a nonprofit environmental organization.

Each individual coral is referred to as a polyp. Coral polyps live on the calcium carbonate exoskeletons of their ancestors, adding their own exoskeleton to the existing coral structure. As the centuries pass, the coral reef gradually grows, one tiny exoskeleton at a time, until they become massive features of the marine environment.

Corals are found all over the world’s oceans, from the Aleutian Islands off the coast of Alaska to the warm tropical waters of the Caribbean Sea. The biggest coral reefs are found in the clear, shallow waters of the tropics and subtropics. The largest of these coral reef systems, the Great Barrier Reef in Australia, is more than 1,500 miles long (2,400 kilometers).

Coral Diversity

In the so-called true stony corals, which compose most tropical reefs, each polyp sits in a cup made of calcium carbonate. Stony corals are the most important reef builders, but organpipe corals, precious red corals, and blue corals also have stony skeletons. There are also corals that use more flexible materials or tiny stiff rods to build their skeletons—the seafans and sea rods, the rubbery soft corals, and the black corals.

The family tree of the animals we call corals is complicated, and some groups are more closely related to each other than are others. All but the fire corals (named for their strong sting) are anthozoans, which are divided into two main groups. The hexacorals (including the true stony corals and black corals, as well as the sea anemones) have smooth tentacles, often in multiples of six, and the octocorals (soft corals, seafans, organpipe corals and blue corals) have eight tentacles, each of which has tiny branches running along the sides. All corals are in the phylum Cnidaria, the same as jellyfish.

THIS IS HOW CORALS EAT

Reproduction

Corals have multiple reproductive strategies – they can be male or female or both, and can reproduce either asexually or sexually. Asexual reproduction is important for increasing the size of the colony, and sexual reproduction increases genetic diversity and starts new colonies that can be far from the parents.

A purple hard coral releases bundles of pink eggs glued together with sperm. Photo credit: Chuck Savall

ASEXUAL REPRODUCTION

Asexual reproduction results in polyps or colonies that are clones of each other – this can occur through either budding or fragmentation. Budding is when a coral polyp reaches a certain size and divides, producing a genetically identical new polyp. Corals do this throughout their lifetime. Sometimes a part of a colony breaks off and forms a new colony. This is called fragmentation, which can occur as a result of a disturbance such as a storm or being hit by fishing equipment.

SEXUAL REPRODUCTION

In sexual reproduction, eggs are fertilized by sperm, usually from another colony, and develop into a free-swimming larva. There are two types of sexual reproduction in corals, external and internal. Depending on the species and type of fertilization, the larvae settle on a suitable substrate and become polyps after a few days or weeks, although some can settle within a few hours!

Most stony corals are broadcast spawners and fertilization occurs outside the body (external fertilization). Colonies release huge numbers of eggs and sperm that are often glued into bundles (one bundle per polyp) that float towards the surface. Spawning often occurs just once a year and in some places is synchronized for all individuals of the same species in an area. This type of mass spawning usually occurs at night and is quite a spectacle. Some corals brood their eggs in the body of the polyp and release sperm into the water. As the sperm sink, polyps containing eggs take them in and fertilization occurs inside the body (internal fertilization). Brooders often reproduce several times a year on a lunar cycle.

HOW CORALS SPAWN

From Corals to Reefs

Coral Growth

Individual coral polyps within a reef are typically very small—usually less than half an inch (or ~1.5 cm) in diameter. The largest polyps are found in mushroom corals, which can be more than 5 inches across. But because corals are colonial, the size of a colony can be much larger: big mounds can be the size of a small car, and a single branching colony can cover an entire reef.

Reefs, which are usually made up of many colonies, are much bigger still. The largest coral reef is the Great Barrier Reef, which spans 1,600 miles (2,600 km) off the east coast of Australia. It is so large that it can be seen from space!

Reefs form when corals grow in shallow water close to the shore of continents or smaller islands. The majority of coral reefs are called fringe reefs because they fringe the coastline of a nearby landmass. But when a coral reef grows around a volcanic island something interesting occurs. Over millions of years, the volcano gradually sinks, as the corals continue to grow, both upward towards the surface and out towards the open ocean. Over time, a lagoon forms between the corals and the sinking island and a barrier reef forms around the lagoon. Eventually, the volcano is completely submerged and only the ring of corals remains. This is called an atoll. Waves may eventually pile sand and coral debris on top of the growing corals in the atoll, creating a strip of land. Many of the Marshall Islands, a system of islands in the Pacific Ocean and home to the Marshallese, are atolls.

It takes a long time to grow a big coral colony or a coral reef, because each coral grows slowly. The fastest corals expand at more than 6 inches (15 cm) per year, but most grow less than an inch per year. Reefs themselves grow even more slowly because after the corals die, they break into smaller pieces and become compacted. Individual colonies can often live decades to centuries, and some deep-sea colonies have lived more than 4000 years. One way we know this is because corals lay down annual rings, just as trees do. These skeletons can tell us about what conditions were like hundreds or thousands of years ago. The Great Barrier Reef as it exists today began growing about 20,000 years ago.

Birth OF AN ATOLL

Where are Reefs Found?

Corals are found across the world’s ocean, in both shallow and deep water, but reef-building corals are only found in shallow tropical and subtropical waters. This is because the algae found in their tissues need light for photosynthesis and they prefer water temperatures between 70-85°F (22-29°C).

Shallow water coral reefs straddle the equator worldwide. (©UNEP World Conservation Monitoring Centre/Global 1KM Version 7.0 Dataset)

There are also deep-sea corals that thrive in cold, dark water at depths of up to 20,000 feet (6,000 m). Both stony corals and soft corals can be found in the deep sea. Deep-sea corals do not have the same algae and do not need sunlight or warm water to survive, but they also grow very slowly. One place to find them is on underwater peaks called seamounts.

Reefs as Ecosystems

Cities of the Sea

Reefs are the big cities of the sea. They exist because the growth of corals matches or exceeds the death of corals – think of it as a race between the construction cranes (new coral skeleton) and the wrecking balls (the organisms that kill coral and chew their skeletons into sand).

When corals are babies floating in the plankton, they can be eaten by many animals. They are less tasty once they settle down and secrete a skeleton, but some fish, worms, snails and sea stars prey on adult corals. Crown-of-thorns sea stars are particularly voracious predators in many parts of the Pacific Ocean. Population explosions of these predators can result in a reef being covered with tens of thousands of these starfish, with most of the coral killed in less than a year.

Corals also have to worry about competitors. They use the same nematocysts that catch their food to sting other encroaching corals and keep them at bay. Seaweeds are a particularly dangerous competitor, as they typically grow much faster than corals and may contain nasty chemicals that injure the coral as well.

Corals do not have to only rely on themselves for their defenses because mutualisms (beneficial relationships) abound on coral reefs. The partnership between corals and their zooxanthellae is one of many examples of symbiosis, where different species live together and help each other. Some coral colonies have crabs and shrimps that live within their branches and defend their home against coral predators with their pincers. Parrotfish, in their quest to find seaweed, will often bite off chunks of coral and will later poop out the digested remains as sandOne kind of goby chews up a particularly nasty seaweed, and even benefits by becoming more poisonous itself.

Protecting Coral Reefs

There is much that we can do locally to protect coral reefs, by making sure there is a healthy fish community and that the water surrounding the reefs is clean. Well-protected reefs today typically have much healthier coral populations, and are more resilient (better able to recover from natural disasters such as typhoons and hurricanes).

A bluefin trevally swims in Hawaii’s Maro Coral Reef, part of the Papahānaumokuākea Marine National Monument. Photo credit: ©James D. Watt/Ocean Stock

Fish play important roles on coral reefs, particularly the fish that eat seaweeds and keep them from smothering corals, which grow more slowly than the seaweeds. Fish also eat the predators of corals, such as crown of thorns starfish. Marine protected areas (MPAs) are an important tool for keeping reefs healthy. Large MPAs protect the Great Barrier Reef and the Northwestern Hawaiian Islands, for example, and in June 2012, Australia created the largest marine reserve network in the world. Smaller ones, managed by local communities, have been very successful in developing countries.

Clean water is also important. Erosion on land causes rivers to dump mud on reefs, smothering and killing corals. Seawater with too many nutrients speeds up the growth of seaweeds and increases the food for predators of corals when they are developing as larvae in the plankton. Clean water depends on careful use of the land, avoiding too many fertilizers and erosion caused by deforestation and certain construction practices. In the long run, however, the future of coral reefs will depend on reducing carbon dioxide in the atmosphere, which is increasing rapidly due to burning of fossil fuels. Carbon dioxide is both warming the ocean, resulting in coral bleaching, and changing the chemistry of the ocean, causing ocean acidification. Both making it harder for corals to build their skeletons.

Source: Ocean.si.edu, lifescience

 

All content provided on the “Scuba Diving Resource”  website is for informational purposes only. Any comments, opinions that may be found here at Scuba Diving Resource are the express opinions and or the property of their individual authors.
Scuba Diving Resource makes no representations as to the accuracy or completeness of any information on this site or found by following any link on this site. Please note that regulations and information can change at any time.

March 7, 2019 |

Leave a Reply

Powered By DesignThisWebsite.com
Skip to toolbar